Biomateriales: ¿tienen espacio en las ciudades inteligentes?

Biomateriales: ¿tienen espacio en las ciudades inteligentes?

My list

Autor | M. Martínez Euklidiadas

Los biomateriales han sido una constante en la construcción de viviendas y ciudades, hasta la ruptura tras las revoluciones industriales en que se empezaron a usar elementos procesados no reciclables. ¿Es posible regresar a unos biomateriales de uso circular? ¿Cómo pueden las urbes del futuro reducir su impacto ecológico mediante biomateriales sostenibles?

¿Qué son los biomateriales?

Los biomateriales son "aquellos materiales que interactúan con sistemas vivos", según la publicación ‘Definiciones en biomateriales’ de David Franklyn Williams, en 1986, aunque también suelen recibir el nombre de bio-material aquellos que derivan sin procesos complejos de recursos naturales.

La madera o el bambú son dos ejemplos por excelencia de biomaterial usados desde la antigüedad, y en los últimos años despuntan otros como la paja prensada para fabricar ladrillos o la lana de oveja como aislamiento térmico. Estos son bio porque derivan de la vida, literalmente.

Tradicionalmente, los biomateriales son aquellos que no resultan nocivos para las personas, motivo por el que se usa el mismo término en medicina e implantes. Los biomateriales son aquellos que resultan inocuos y en los que es seguro vivir a largo plazo. El asfalto, por ejemplo, no es un biomaterial, debido a los compuestos volátiles que desprende y su toxicidad.

Biomateriales sintéticos para la construcción del futuro

Resulta complejo dibujar de forma precisa la línea que separa lo natural de lo artificial, categorías humanas a las que la realidad no se doblega. Es por ello que nuevos materiales sintéticos para construccióncaen también en la categoría de biomateriales. Algunos de ellos son meras mezclas físicas, mientras que otros usan tecnología punta para su producción.

El ejemplo más mencionado es el hormigón autorreparable (autogenic healing), un tipo de hormigón que contiene cápsulas con bacterias Bacillus subtilis. Cuando este hormigón se agrieta, las bacterias se liberan y rellenan la fisura con una capa de caliza. Aunque obviamente no piensa, lo conoce también por el nombre de hormigón inteligente por sus propiedades autónomas.

biomaterial hormigon pulido

Biomateriales sostenibles para las ciudades

Teniendo en cuenta que la masa antropogénica superó por primera vez a la biomasa en 2020, y que los entornos urbanos tienen un elevado impacto ambiental (más aún si son dispersos), conviene hacer uso de biomateriales sostenibles que eviten impactos ambientales o ayuden a contenerlos.

El Breathe Brick es un ejemplo de biomaterial por partida doble: es sintético y novedoso, pero a la vez es biocompatible. Este ladrillo es capaz de actuar como sistema pasivo de filtrado del aire del interior de los edificios. El Bee Brick es otro ladrillo, esta vez pensado para colonias de abejas.

Entre algunos de los biomateriales sostenibles para las ciudades se encuentran proyectos como sistemas de fachada con cultivos de microalgas, como la piel verde del BIQ, en Hamburgo; ladrillos fabricados con base de hongos (formalmente, micelios); o residuos de piel de patata para fabricar aislantes.

Circularidad de los biomateriales de construcción

El metabolismo urbano es uno de los grandes pilares de la sostenibilidad en y de las ciudades, con foco en circular materiales de forma que los residuos se reduzcan a la mínima expresión. En esta circularidad, los materiales compuestos mediante residuos orgánicos son ideales, dado que podrán reintegrarse a los flujos de la ciudad evitando no solo el impacto de los desechos, también el de la fabricación.

En la actualidad, el grueso de los materiales urbanos usados para la construcción de infraestructura —hormigón, asfalto, acero, asfalto, ardilla, etc.— tiene unos índices de reciclabilidad bajos. Aunque hay cada vez más proyectos que se proponen reutilizar estos desechos, lo cierto es que sería mucho más sencillo si los materiales de partida tuviesen componentes que permitan ese reciclaje.

Imágenes | M. Martínez Eukidiadas

Related content

Recommended profiles for you

RK
Raed Khoury
GAMA EPSELON HOLDINGS LTD.
PROJECTS MANAGER
DA
Dr RAB ABU BAKAR
University Teknologi MARA
DY
DIAB Youssef
EIVP
Research and Development. Relations with companies
KK
kyounghwan kim
kiria
PA
Pilar Aguirre
Rastro Estudio
Architect
SP
Shazil Mehmood Planner
Urban Community Housing PVT LTD
RR
Raihan Raihan Alifasyah
Muhammadiyah university of Surakarta
Student
AY
Aditya Yadav
Mekdam Technology WLL
MS
Miguel Angel Santos Bouzas
R&M
Territory Manager
PB
Pieter Bailleul
Pieter Bailleul
CM
Chryssa Martini
Eleusis 2021 European Capital of Culture
Architect Engineer Head of Premises & Infrastructure
FM
Francesca Mollica
Turner & Townsend
Associate Director at Turner & Townsend - global Project & Cost Management consultant
MK
mazen kotob
JEC
Senior Head of Infrastructure & Management
PB
Partha Bhattacharyya
Brain Domain
CTO
AV
Angélica Veronese
Urbê Planejamento Urbano e Arquitetura
IA
Iqbal AHMED
Government of Pakistan, Ministry of Planning Development and Special Initiatives
AH
Aaron Huang
SHANGHAI LONG-JOIN INTELLIGENT TECHNOLOGY INC.
LONGJOIN® Photocell Manufacturer engineer /photocell /zhaga book 18
FD
Frehun Demissie
CLIC Ethiopia
BR
BENITO RODRIGUEZ
ESCALA
ASSOCIATE DIRECTOR
BM
Breuillaud Manon
Engie Solutions
Category Lead Buyer