Reconocimiento facial y lucha contra el crimen: por qué los sesgos pueden llevar a una justicia llena de prejuicios

Reconocimiento facial y lucha contra el crimen: por qué los sesgos pueden llevar a una justicia llena de prejuicios

My list

Autor | Arantxa HerranzCada vez más ciudades apuestan por los sistemas de reconocimiento facial como una medida para luchar contra el crimen. Moscú ha sido una de las últimas, pero antes que a la capital rusa estos sistemas llegaron a ciudades como Chicago o a países enteros como ChinaUna medida que no ha estado exenta de polémica, puesto que los defensores de las libertades civiles y la privacidad temen que su tecnología acabe convirtiéndose en un arma de vigilancia masiva y, sobre todo, discriminatoria. Europa, de hecho, sopesa prohibir el uso de estos sistemas de reconocimiento facial en espacios públicos durante cinco años hasta que se determine cómo evitar, precisamente, sus posibles abusos.El problema no es tanto que estamos todavía ante un sistema imperfecto (en China, por ejemplo, hay cierta controversia tras constatarse que las entradas a edificios con reconocimiento facial están impidiendo el paso a personas con mascarillas para evitar el coronavirus); parte de la polémica es que el reconocimiento facial tiene importantes sesgos raciales, sexuales y de edad.

Hombres blancos de mediana edad, los más reconocibles

Investigadores del Instituto Nacional de Estándares y Tecnología descubrieron que los algoritmos de identificación facial son mucho mejores con las personas descritas como de raza blanca que con las afroamericanas y asiáticas. Tanto que a los errores en la identificación de estas personas tienen de 10 a 100 veces más probabilidades de fallar que con las caras caucásicas.Entre una base de datos de fotos utilizadas por las agencias policiales en los Estados Unidos, las tasas de error más altas se produjeron en la identificación de los nativos americanos, según el estudio. Además, los algoritmos tuvieron más dificultades para identificar a las mujeres que a los hombres.Para hacer este estudio, el organismo puso a prueba casi 200 algoritmos de reconocimiento facial de casi 100 desarrolladores, utilizando cuatro colecciones de fotografías con más de 18 millones de imágenes de más de 8 millones de personas. 

Los sesgos, maximizados en la inteligencia artificial

El problema de los sesgos no es nuevo. Ni único de la inteligencia artificial. Pero el gran problema es que los algoritmos pueden, mal programados, maximizar y potenciar esos sesgos que afectan a la raza, edad, condición y orientación sexual o religión de las personas.Y no afecta únicamente al reconocimiento facial: una investigación reciente también ha demostrado que un algoritmo utilizado ampliamente en los hospitales de EE.UU. para asignar atención médica a los pacientes ha discriminado sistemáticamente a las personas negras.En muchos casos, la IA puede reducir la interpretación subjetiva de los datos de los humanos, ya que los algoritmos aprenden a considerar solo las variables que mejoran su precisión predictiva, en función de los datos de entrenamiento utilizados. Al mismo tiempo, una amplia evidencia sugiere que los modelos de IA pueden incorporar prejuicios humanos y sociales y desplegarlos a escala. Por ello, tanto humanos como máquinas deben esforzarse para evitar el sesgo y, con ellos, la discriminación. El sesgo en la IA se produce sobre todo en los datos o en el modelo algorítmico, por lo que la industria busca desarrollar sistemas de IA en los que podemos confiar. Y, para ello, se hace necesario y entrenar estos sistemas con datos imparciales, desarrollando además algoritmos que puedan explicarse fácilmente para su posible análisis cuando se detecten falsos positivos.Imágenes | Fauxels, teguhjatipras

Related content

Recommended profiles for you

TL
Tebogo Legong
university of pretoria
DK
Dejan Kovilovski
Alkaloid
JM
John Manning
Microsoft
Marketing and messaging SME
MA
Mir Mahmood Ali
Konnektiply
JP
Jon Polly
ProTecht Solutions Partners
I am the owner of a small security consulting firm focused smart city camera applications.
RR
RAFAEL RAVELO JIMENEZ
aiecin
Owner
LC
Leonardo Campanale
Associazione Nazionale Controllo di Vicinato
President
ME
Marc Enciso
Fira de Barcelona
Senior Architect
BO
Belén Olarte
Multimedios Regional SA
MJ
margit jeppesen
Felicity Smart Infrastructure
DC
DUYGU CANAS DJANASH
Archroma Iberica SL
Procurement Manager
HL
Harshita Lal
Deloitte India
Deloitte India
WL
Walter Lopez
PC LAND S.A.
Seguridad de la informacion
KG
Ksenia Golovko
Zecurion
PR manager assistant
JC
José María Hdez Chema
SDYAAT
Gerente
CS
Csaba Sandor
SURVIOT Monitoring Ltd.
CEO
DC
de Brito Christophe
ADI Global
Technical Expert
MM
Marcos Cruz Molina Marcos
Municipio Vega Baja
SS
Shahbuddin Saifi
E4U technologies
E4U technologies is a leading soltions and service provider security and surveillance solutions.
RC
René Calis
Eagle Eye Networks
www.een.com